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Do Chemical Reactions React along the Reaction Path? 
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Abstract: In contrast with traditional intuition, chemical reactions may proceed far away from reaction paths (defined as 
paths of steepest descents starting at the systems' potential barriers). This is demonstrated and explained by classical trajectory 
simulations and quantum vibrationally near-adiabatic hyperspherical representations of an exoergic collinear hydrogen-transfer 
reaction with two isotopic variants, F + DBr(U) — FD + Br and F + MuBr(u) — FMu + Br, with energies well above the 
classical reaction thresholds. The reactants leave the reaction path by vibrationally induced light atom transfer at large distances 
between the heavy atoms, i.e. by cutting the corner between the educt and product valleys of the potential energy surface (without 
tunneling). These shortcuts are particularly prominent if the reaction path penetrates into the dynamical white spot covering 
the potential corner. Strong detours away from the reaction path may be induced by vibrational excitation (u) of educts or 
by decreasing the mass of the transferred atom. Detours by tunneling are complementary to vibrationally induced corner 
cutting. The model systems demonstrate the important and possibly dominant role of reaction dynamics in comparison with 
static properties of the reaction path. 

1. Introduction 
Chemical intuition and tradition assume that chemical reactions 

react along a minimum energy path, the reaction path £.' This 
view is summarized by the familiar textbook diagram showing 
the system's potential energy surface V versus £, usually from 
educts via the potential barrier t to products. Of course, this is 
just a simplified representation of £, which may be defined as path 
of steepest descent from the potential barrier(s) t toward the educt 
and product valleys of V, imbedded in multidimensional space of 
the system's internal coordinates (for recent reviews see ref 2 and 
3). Thus £ is defined as the minimum potential energy path 
depending exclusively on static properties of the potential V, 
irrespective of the system's reaction dynamics. Nevertheless, the 
static properties of £ and its surroundings, including locations and 
heights of potential barriers J, curvature, and vibrational fre
quencies of normal modes orthogonal to £, are often related to 
chemical reaction dynamics, rate coefficients, or product distri
butions.1,3"5 However, without bias, such relations are by no 
means trivial. 

Do chemical reactions really react along £? Of course, one 
important exception is well-known: At low temperatures or en-
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ergies, in particular below the classical reaction threshold, the 
educts will avoid climbing the barrier J by tunneling, and the 
preferential tunneling paths,1"1,6,7 e.g. Marcus-Coltrin paths8 or 
least action (ground-state) tunneling paths,9 may deviate from 
curved reaction paths, cutting the corner on their convex sides; 
for reviews see ref 3, 6c, and 10. 

To the best of our knowledge, similar systematic deviations from 
£ have not been reported previously for highly excited educts, 
although this observation might be conjectured by extrapolation 
of the low-energy tunneling results. Of course, individual classical 
trajectories simulating the chemical reaction hardly ever coincide 
with £. Nevertheless, traditional chemical intuition states that 
typical trajectories propagate close to £, so that representative 
ensembles of trajectories or corresponding quantum wave packets 
should follow and cover £. Accordingly, a comparative study of 
HFH, H3 and ClH2 resonances did not yield any outstanding 
preference of decays along "dynamical reaction paths" different 
from minimum energy reaction paths.11 However, a rather 
exceptional analysis of quantum fluxes for the collinear reaction 
H + H2(v = 0) —• H2(u' = 0) + H indicates stimulating tunneling 
deviations even slightly above the classical threshold, together with 
the intriguing development of regions of dynamic inaccessibility 
as the initial relative kinetic energy increases.7 

In this paper, we present novel strong and systematic detours 
away from £ in special cases of exoergic elementary hydrogen-
transfer reactions. As a model system we consider two isotopic 
variants of the collinear reaction shown in eq 1.1 with vibrational 

F + HBr(U) — FH + Br (1.1) 
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(b) Kuppermann, A. Theor. Chem. (N.Y.) 1981, 6A, 79. (c) Schatz, G. C. 
Chem. Rev. 1987, 87, 81. (d) Tachibana, A.; Fueno, H.; Yamabe, T. J. Am. 
Chem. Soc. 1986, 108, 4346. 
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Figure 1. Classical trajectory simulation of the collinear F + DBr(c) — 
FD + Br reaction with total energy £,„„1 = E = E, + £',„„, and collision 
energy £,„„, = 2 kJ m o r ' . F.quipotential contours K12(x. y) = -100 . 
-200 -500 kJ mol"' are presented with mass-weighted coordinates 
x = 2.8/?FB, and y = RDBl. The angle <t>m between educt and product 
valleys is marked by the abscissa and the straight ascending line. The 
reaction palh { passes via the potential barrier t The radial limits rm„(() 
of I arc indicated by dashed lines. The radial limits r, of the classical 
trajectories are indicated by doited lines. They also mark the boundary 
of the dynamical white spot, together with the equipotential contour 
V(x,y) = £,0„| which may be extrapolated approximately from the en
velope of the trajectories. 

-&-28RFBl/A 
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Figure 2. 
DBr(c) — FD(I,') + B 
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indicated by horizontal bars. The 
approximate turning points /-,. for q 
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taction versus hyperspherical radius r = 2$Rr 

late with educt F + DBr(r) and product 
s indicated by quantum numbers v and 
correspond to potentials V1 = VLtPS and 

The total energies E of reactions F 
= 2 kJ mol"' collision energies are 
vertical arrows mark the resulting 

ianlum wave packets simulating the 
spond to the classical r„j determined 

educt s ta ts o, at energies well above the tunnel ing reg ime. This 
sys tem is a favorable c a n d i d a t e , since it exhibi ts several s t rong 
dynamica l effects, including popula t ion inversion of products , 
approx imate conservation of l ranslat ional energy, and oscillatory 
r e a c t i v i t y , ' 2 ' 6 which tu rn out to be impor t an t . 

T h e present search for novel deviat ions of react ion 1.1 from 
its intr insic react ion path | has been mot ivated by the recent 
discovery of a "dynamica l whi te spot" on the potent ia l energy 
surface of react ion 1.1, which in tu rn is a consequence of a 
dynamica l effect discovered by J . C . Polanyi et a l . , " i.e. v ibra-
tionally induced corner cutt ing, as follows: For light-atom-transfcr 
systems such as react ion 1.1 a n d for energies above the classical 
threshold , the centra l v ibra t ing a tom m a y h o p from one heavy 
a t o m to the o ther at r a t he r long d is tances (wi thout tunne l ing) . 
In corresponding classical simulations, real trajectories switch from 
the educt to the produc t valleys of the potent ia l energy sur face , 
cu t t ing the corner between these valleys. T h i s corner is ener
getically accessible (in cont ras t with the case of tunnel ing where 
it is inaccessible) but dynamica l ly off-limits: It cons t i tu tes a 
dynamica l whi te spot, never visited by any classical t ra jector ies 
or cor responding q u a n t u m wave packe t s . In consequence , hy
drogen- t rans fe r react ions should leave the react ion path if J 
pene t r a t e s into the d y n a m i c a l whi te spot! 

It is impor t an t to dis t inguish Polanyi and co -worke r s ' v ibra
t iona l^ ' induced corner c u t t i n g " from tunnel ing- induced corner 
cut t ing . T h e first mechan i sm, which is fundamenta l for the 
present paper , requires energies above the classical threshold; the 
second may occur at lower energies. T h e first may be descr ibed 
with real classical trajectories; the second requires complex ones . 
The first is due to exclusive dynamic constraints , and the second, 
to energet ic ones. Nevertheless, both mechanisms yield the same 
net effect: corner cu t t ing . This s imi lar i ty a lso suggests t ha t 
vibrationally induced corner cut t ing at high energies might cause 
de tours from £, similar to tunnel ing- induced corner cu t t ing , but 
independent ly and with possibly different energet ic t r ends . 

In the following, we shall test this working hypothesis and search 
for s i tuat ions where the react ion path is covered, in pa r t , by the 
dynamica l whi te spot . For this purpose we extend our previous 
invest igat ion ' 5 to more ex t reme s i tuat ions of (i) high-vibrat ional 
exci ta t ion of educ ts , (ii) isotopic subs t i tu t ion , and (iii) react ion 
d y n a m i c s on modified potential energy surfaces . 

2. Models and Techniques 

For subsequent investigations of isotope effects, wc consider two 
variants of the collinear hydrogen-lransfer reaction 1.1. i.e. cq 2.1 and 
2.2. where the hydrogen atom is replaced by deuterium or muonium. The 

F + DBr(r) — FD + Br 

F + M u B r ( U ) - FMu + Br 

(2.1) 

(2.2) 

masses used are mM„ = 0.11397. m0 = 2.014, m, = 19.00, and »iB, = 
79.91 amu. Muonium-transfcr reactions have been studied previously 
in rcf 9c,d, 18, and 19. 

(12) Jonathan. N. B. H.; Sellers. P. V.; Stace, A. J. MoI. Phys. !981, 43. 
215. 

(13) (a) Wiirzberg, E.; Houston. P. L . / . Chem. Phvs. 1980. 72. 5915. (b) 
Tamagake. K.; Setser, D. W.; Sung. J. P. J. Chem. Phys. 1980. 73. 2203. (c) 
Smith. 1. W. M.; Wrigley. D. J. Chem. Phvs. 1981. 63. 321. (d) Dill. B.; 
Heydtmann, H. Chem. Phys. 1983.81. 419. (e) Dzelzkalns. L. S.: Kaufman, 
F. J. Chem. Phys. 1983, 79. 3836. (f) Aker, P. M.; Donaldson. D. .1.; Sloan 

1184. 
90. 3110. 
.11. H. R. Chem. Phys. Lett 

: Romelt, J.; Schor. H. Ft. R. J. Chem. Phys 
: Child, M. S.; Romelt, J. Chem. Phys. Lett 

/07.549. (b) 
1985. 
1985, 

. L.; Kiprof, P.; Manz. J. J. Chem. Phys. 1987. 87. 
. Diplomarbeit. Technischc Univcrsiiat Munchcn. 
; Gertitschke. P. I..; Kosloff. R.; Manz, J. J. Chem. 

in parts a-d of Figure 1. For comparison, the i 
of the reaction path and the location of lhc saddle 

idial boundary rm;„(£) 
point r' are also given. 
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120. 349. 
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941. (b) Gertitschke, P. L. 
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J. In 7"Ae Theory of Chemical Reaction Dynamics: Clary. D. C . Ed.; Reidel: 
Dordrecht, The Netherlands, 1986; p 77. (c) Manz, J. In Molecules in 
Physics. Chemistry and Biology: Maruani, J., Ed.; Reidel: Dordrecht, The 
Netherlands, 1987; Vol. 3. 
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Do Chemical Reactions React along the Reaction Path? 

The reactions are described in terms of mass-weighted coordinates (cq 
2.3a and 2.3b) for X = D and Mu. Here mFXBl and m = mXB, are the 
reduced masses of the F + XBr and XBr systems, /?XBr ' s , n c XBr bond 
length, and /?p.xBr ' s l n e distance from F to the center of mass of XBr. 

X = (»»F.XBr/'»»)I /2 '?F.XBr = r c ° s * (2-3a) 

y = /̂ XBi = r sin </> (2.3b) 

Equation 2.3 also defines the hyperspherical radius r and polar angle 
<t>, as adapted e.g. from ref 14, 15, and 19; for reviews see ref 16. The 
ranges of r and <t> are shown in eq 2.4a and 2.4b with skew angle given 
in eq 2.5. The light mass of the transferred atom, X = Mu or D, 

0 < r < <° (2.4a) 

0 < * < <S>m (2.4b) 

<j>m = arctan [mx(mf + mx + mBr)/mFmBr]' '2 (2.5) 

between its heavy partners F and Br implies that <t>„ is rather small (eq 
2.5a and 2.5b see Figures 1 and 3). As a consequence, the mass-

4>„ = 20.1° for F + DBr (2.5a) 

4>„ = 4.9° for F + MuBr (2.5b) 

weighted coordinate x as well as the hyperspherical radius r is approx
imately proportional to the distances between the heavy atoms (eq 2.6a 
and 2.6b). Therefore, educt and product translations are essentially 

r = x = 2.8tfFBr for F + DBr (2.6a) 

r «= x = Il .6RFBl for F + MuBr (2.6b) 

along r, whereas vibrations of the central atom X between F and Br are 
along 4>, ranging from ^ — 0 for the F + XBr configuration to <fr -» #„ 
for FX + Br. 

The FXBr interactions are modeled with two potential energy surfaces 
V. The first one (eq 2.7) is the best extended LEPS potential of Jonathan 
et al.,12 with the parameters presented in Table 3 of ref 12. This po-

V1 = VLBK (2.7) 

tential has already been used in several studies of the F + HBr reac
tion.'2 '4"" The second potential (eq 2.8) is a modified LEPS potential 

V1 = ^LEPS + ^GaU* (2-8) 

with a small Gaussian shoulder superimposed on the LEPS potential 
ridge separating the educt and product potential valleys. It is applied 
exclusively to the FDBr system below. Similar modified LEPS potentials 
have been used previously, e.g. for model simulations of the H-I-F 2 

reaction20 or hydride transfers among nitrogen heterocycles." 
Contour plots of V1(X, y) and K2(X, y) are shown in parts a-c and d 

of Figure I, respectively. They are hardly distinguishable; in fact, the 
differences between K1 and K2 are possibly even smaller than deviations 
between V1 or V2 and the exact F + XBr potential, which is unknown. 
Explicitly, 

Vi - K1 - K0au„ = 
A exp[-f/,(* - C1)

2 + h(x - C1)O- - C2) + f3(y - C2)
2]] (2.9) 

with/, = (cos2 <*)/a2 + (sin2 Ct)Ib1J1 = 2 sin a cos a (1/a2 - 1/62), and 
A = (sin2 a)/a2 + (cos2 a)/b2 and parameters C1 = 7.75 A, C2 = 1.475 
A, a = 5.71°, A = 12.0 kJ mol"', a = 1.25 A, and b = 0.05 A (1 A = 
10-'° m). 

One relevant consequence of the Gaussian modification (eq 2.9) is that 
the reaction path £2 of V1 is shifted farther into the potential corner than 
J1 of Vy Quantitatively, the closest approach of £ to the three-atom 
coincidence is 

rni„({.) = 8.3 A for V, ^1n(J2) = 7.8 A for V2 (2.10) 

Other relevant properties of V1 and V1 are listed in Table I. This 

(18) (a) Walker, D. C. Muon and Muonium Chemistry; Cambridge 
University; Cambridge. MA. 1983. (b) Roduner, E. Prog. React. Kinet. 1986, 
14, 1. 

(19) (a) Manz, J.; Romelt. J. Chem. Phys. Lett. 1980, 76, 337; 1981, 81, 
179. (b) Manz, J.; Pollak, E.; Romelt, J. Chem. Phys. Lett. 1982,86, 26. (c) 
Aquilanti, V.; Cavalli, S.; Lagana, A. Chem. Phys. Lett. 1982, 93, 179. (d) 
Hiller. C; Manz, J.; Miller, W. H.; Romelt, J. / . Chem. Phys. 1983, 78, 3850. 
(e) Romelt, J. Chem. Phys. 1983, 79, 197. (f) Clary, D. C; Connor, J. N. 
L. J. Phys. Chem. 1984,88. 2758. (g) Bondi, D. K.; Connor, J. N. L.; Manz, 
J.; Romelt, J. MoI. Phys. 1983, 50, 467. 

(20) Jakubctz, W. Chem. Phys. 1978, 35, 141. 
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Table I. Barrier Properties of F + DBr Model Potential Energy 
Surfaces" 

AK 
^FBr 

" i l l 

V1 = 
I/ » 
1 1 F PS 

1.639 
3.362 
1.942 

Vl = 
!•Ws + 
I/,. c 

'(,AM 

1.639 
3.362 
1.943 

y = 
X 

r 

RDB, 

V1 = 

1.419 
9.322 
9.430 

Vi = 

^..EPS + 
I ' . , . , , ' 

1.420 

9.323 
9.430 

° Barrier heights in kilojoulcs per mole; distances in angstroms. 
/JAB = distance from A to B; x, y = mass-weighted cartesian coordi
nates; r = hyperspherical radius (eq 2.3). 'Reference 12; Table III 
'Equations 2.8 and 2.9. 

Figure 3. Classical trajectory simulations of the collincar F + MuBr(o) 
-* FMu + Br reaction with total energy £loul = E1. + £,rani and collision 
energy £,,„„, = 20 kJ mol"' on the potential V1 = VLEes (notations as in 
Figure I). 

Figure 4. Hyperspherical potential curves iCi(r) for the collinear F + 
MuBr(I;) -» FMu(D1) + Br reaction on potential V1 = Vlips (notations 
as in Figure 2). The quantum radial boundaries r, qu for the F + MuBr(C 
= 0,2) reaction correspond to the classical r,.cl determined in parts a and 
b of Figure 3. 

comparison demonstrates the similarity of model potentials V1 and V1. 
The reaction paths £ are evaluated as usual2 by propagating the po

tential gradients from the barriers } toward the educt and product valleys. 
The gradients VV = (dV/dx, dV/dy) are calculated by numerically 
converged finite differences, with small step-size A£ = 0.001 A. 

Classical trajectory simulations are carried out as explained in detail 
in ref 15a (see also ref 21). In particular, representative ensembles of 
typically 25-500 trajectories equidistant in phase are generated in the 
educt potential valley. Many of them turn out to be nonreactive, due to 
the small F + DBr and F + MuBr reaction propabilities'4"'6 at small 
collision energies. The reactive trajectories are plotted in Figure 1, 
starting out from the educt valley as oscillatory ribbon, which unravels 
in the interaction region before leaking out into the product valley. The 
initial ribbons indicate F + XBr reactivity bands.15-22 The numbers of 
representative trajectories shown in Figure 1, typically 12, are sufficient 
for the subsequent conclusions. 

The classical trajectories correspond to quantum wave packets • 
simulating reactions 2.1 and 2.2. In close analogy, *(/) may also be 
propagated from educts to products, i.e. by solving the time-dependent 

(21) Truhlar, D. G.; Muckermann, J. T. In Atom-Molecule Collision 
Theory: A Guide to the Experimentalist; Bernstein, R. B., Ed.; Plenum: New 
York, 1979; p 505. 

(22) Wright, J. S.; Tan, K. G. J. Chem. Phys. 1977. 66, 104. 
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Table II. Dynamics of Collinear F + XBr Reactions 

reaction 

energies 

^ trans 

2.0 
2.0 
2.0 
2.0 

20.0 
20.0 

mol" 
7kJ 
i 

^ l o t a l 

-365.1 
-244.6 
-177.6 
-365.1 
-313.1 
-161.4 

radial boundaries'/A 

potential4 
rmmiO 

8.3 
8.3 
8.3 
7.8 

34.8 
34.8 

'V1Cl 

7.6 
8.8 
9.7 
7.9 

32.2 
40.0 

<J-qu 

7.9 
9.2 

10.0 
7.9 

30.0 
38.1 

reaction" 
along I figures 

F + DBr(t> = 0) — FD + Br 
F + DBr(D = 6) — FD + Br 
F + DBr(D = 10) — FD + Br 
F + DBr(I,- = 0) — FD + Br 
F + MuBr(U = 0) — FMu + Br 
F + MuBr(U = 2) — FMu + Br 

V1 

Vx 

K, 

yes 
no 
no 
no 
yes 
no 

la,2 
lb.2 
lc,2 
ld,2 
3a,4 
3b,4 

J£totai = ^trans + E1, measured from three-atom dissociation threshold. 4K1 = KLEPS (eq 2.7), and K2 = KLEPS + KGauss (eq 2.8). crmin(£) = static 
limit of reaction path £ (eq 2.10); rcd and rum = classical and quantum boundaries of dynamical white spot; see eq 2.13. ' '"No" if rmm(£) < rv; see 
criterion 2.15. 

Schrbdinger equation numerically, with either mass-weighted cartesian 
or hyperspherical coordinates (eq 2.3), as in ref 15c and 23. A series 
of snapshots of ^lf(x, y, t) = ̂ t(r, <j>, t) would then show directly whether 
the F + XBr wavepackets follow and cover the reaction path or not. 
However, explicit evaluations of *(r) are expensive.23 Therefore, we use 
the more economic quantum vibrationally near-adiabatic hyperspherical 
representations of reactions 2.1 and 2.2, which allow us to compare the 
radial ranges of £ and *( /) directly. This is sufficient for the present 
purpose. The technique is based on previous evaluations of reaction 
2.1,14"16 as follows. 

The rather slow translational motion of heavy atoms F and Br in 
comparison with fast vibrations of X = Mu or D suggests a near-adia
batic, Born-Oppenheimer-type separation of motions along r and <f>.l6A9-2* 
At fixed r, the angular Schrbdinger equation is eq 2.11, yielding adiabatic 

-h2 #_ 
+ V(4>, r) *„,(0; r) = £„,(/•) *(0; r) (2.11) 

hyperspherical potential curves 6Ci{r) for the radial motion. These po
tential curves, adapted from ref 14-16 and extended to large hyper
spherical vibrational quantum numbers u3 for potentials K1 and K2, are 
shown in Figures 2 and 4 for the F + DBr and F + MuBr reactions, 
respectively. Asymptotically for r —- <=, they approach the educt or 
product levels E0 or E1/. 

When eq 2.11 is used, reactions 2.1 and 2.2 may be represented by 
radial wave packets moving on the potential curves £„3(r) from educts 
F + XBr(D) at large r toward interaction configurations FXBr at small 
r and back to educts or to products FX(UO + Br at large r. During these 
radial translations, the orthogonal vibrations turn out to be nearly adia
batic, conserving their quantum number D3; i.e., most collisions are elastic, 
and the small fraction of reactive collisions prefer transitions between 
neighboring hyperspherical potential curves, D3 -» v'} = v3 ± 1. The 
reaction from F + XBr(D) to FX(u') + Br thus corresponds to radial 
motions along <S0J(r) and Sn±x(r) with near-adiabatic transitions between 
these potential curves. In the asymptotic limit 

* . , ( / • " °) " 5»3±i(',-> °°) = E1, (2.12) 

This result indicates approximate conservation of vibrational energy 
(measured from the three-atom dissociation threshold) or, equivalently, 
Baer's rule25 (see also ref 14-16), i.e. approximate conservation of 
translational energy. Note that rule 2.12 implies strong population in
version of products; e.g., educts F + DBr(i> = 0) yield primarily products 
FD(u' = 6) + Br.14'15 

The near adiabaticity (eq 2.12) is supported by several previous studies 
not only for the F + XBr reactions14"16 but equivalently for similar 
hydrogen-transfer reactions.9''"'24'26 For example, oscillatory quantum 
reaction probabilities are well reproduced by approximate quantum or 
semiclassical evaluations, which use exclusively two neighboring hyper-

(23) (a) McCullough, E. A.; Wyatt, R. E. J. Chem. Phys. 1971, 54, 3578. 
(b) Kosloff, R.; Kosloff, D. J. Chem. Phys. 1983, 79, 1823. (c) Bisseling, R. 
H.; Kosloff, R.; Manz, J. / . Chem. Phys. 1985, 83, 993. (d) Mohan, V.; 
Sathyamurthy, N. Comput. Phys. Rep., in press. 

(24) (a) Babamov, V. K.; Marcus, R. A. J. Chem. Phys. 1981, 74, 1790. 
(b) Babamov, V. K.; Lopez, V.; Marcus, R. A. J. Chem. Phys. 1983, 78, 5621; 
Chem. Phys. Lett. 1983,101, 507; / . Chem. Phys. 1984, 80, 1812; 1984, 81, 
4181(E). (c) Abusalbi, N.; Kouri, D. J.; Lopez, V.; Babamov, V. K.; Marcus, 
R. A. Chem. Phys. Lett. 1984, 103, 458. (d) Nakamura, H. J. Phys. Chem. 
1984, 88, 4812. 

(25) Baer, M. J. Chem. Phys. 1975, 62, 305. 
(26) (a) Kaye, J. A.; Kuppermann, A. Chem. Phys. Lett. 1981, 77, 573; 

1982, 92, 574. (b) Shoemaker, C. L., Abusalbi, N.; Kouri, D. J. J. Phys. 
Chem. 1983, 87, 5389. 

spherical potential curves correlating with (near-) degenerate educt and 
product levels E„ * ^ * 1 * * * 2 4 

As a consequence of the vibrational near adiabaticity (eq 2.12), the 
radial range of quantum wave packets simulating the reaction F + 
XBr(D) -*• FX (DO + Br coincides with the accessible range of the po
tential curve £t. ](/•), which includes the ranges of SVi and ^1. , (see 
Figures 2 and 4). Therefore, the radial range explored by educts F + 
DBr(u = 0) at total energy £total is essentially from r = => to the classical 
turning point r„ defined by eq 2.13. In principle, smaller values r < rv 

= 6„ r i ('..•) f° r £« = E, (2.13) 

may be reached by tunneling or diabatic transitions; however, these 
effects are negligible.14"16 When eq 2.13 is used, the radial range covered 
by reactions 2.1 and 2.2 can be determined graphically with the plots of 
the potential curves SVi(r) (cf. Figures 2 and 4). 

Quantum-classical correspondence suggests that the radial ranges of 
quantum wave packets and classical trajectories should be similar; i.e., 
the quantum limit /•„,„ of eq 2.13 should agree approximately with the 
radial boundary rvcl to classical trajectories simulating the F + XBr(D) 
reaction. Approximate values of rvxi are determined with the repre
sentative ensemble of trajectories shown in Figures 1 and 3. Thus, we 
anticipate eq 2.14. 

'"wl : (2.14) 

By definition, rv is the upper radial boundary of the dynamical white 
spot of the potential that is inaccessible to quantum wave packets or 
trajectories simulating the F + XBr reactions. This dynamical boundary 
rv (eq 2.14) should now be compared with the static radial limit rmin({) 
(eq 2.10) of the reaction path. The criterion (eq 2.15) would indicate 
that £ penetrates into the dynamical white spot; i.e., the reaction does not 
react along £. 

rmJ£) < r* (2.15) 

3. Results 

3.1. Vibrationally Induced Corner Cutting. Effects of vibrational 
excitation of educts are demonstrated exemplarily by a series of 
classical trajectory simulations of the F + DBr(y) reaction 2.1 
on the LEPS potential Vx (eq 2.7) for v = 0, 6, 10. The results 
are shown in parts a-c of Figure 1 and summarized in Table II, 
together with the collision energies and other relevant information. 
Obviously, ground-state educts follow the reaction path £, which 
is hardly visible in Figure la because it is covered by the repre
sentative ensemble of F + DBr(u = 0) trajectories. However, the 
situation changes dramatically upon vibrational excitation of 
educts: As v increases, the dynamical white spot spreads out and 
eventually starts to sweep the trajectories from the reaction path 
£ (see Figure lb,c) . Quantitatively, the dynamical boundaries 
r„iCl to classical trajectories exceed the static radial limit rmi„(£) 
of the reaction path as soon as v > 4; i.e., educts F + DBr(t>) leave 
the reaction path if v > 4. 

The detours of the F + DBT(V > 4) reaction from £ may be 
interpreted as consequence of vibrationally induced corner cutting, 
a dynamical effect studied previously only for ground-state or 
moderately excited educts:15,17 Larger vibrational energy E11 of 
educts implies larger vibrational amplitudes and momenta per
pendicular to the reaction path £. Consequently, the trajectories 
are inclined to change valleys earlier; i.e., the hydrogen atom is 
transferred at larger distances between the heavy atoms. 

The systematic increase of the classical boundaries rofil also 
corresponds to an equivalent increase of the quantum boundaries 
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rCiqu upon vibrational educt excitations v (see Table II). The 
quantum results may be understood as consequence of the nested 
structure of potential curves <S0(r) < £x(r) < <S2(r) < ... (cf. eq 
2.11 and Figure 2): The larger the i;, the higher is the energy 
of SU}(r) correlating with educt level E0 and the larger is the radial 
turning point rv where quantum wave packets representing educts 
F + DBr(u) are reflected essentially to products FD(i>0 + Br (cf. 
eq 2.13). 

The good agreement of quantum boundaries roqu with the 
classical ones rpcl- as anticipated in eq 2.14 and documented in 
Table II, confirms the deviations of the F + DBr(i> > 4) reaction 
from the reaction path J according to criterion 2.15. Incidentally, 
the equivalence of the quantum vibrationally near-adiabatic hy-
perspherical and classical trajectory representations is also sup
ported by the rule of approximate conservation of vibrational 
energy, which has been derived quantum mechanically in eq 2.12 
and corresponds to the very large vibrational amplitudes of highly 
excited products FD(DO + Br, as simulated classically in parts 
a-c of Figure 1. 

3.2. Isotope Effects. Isotope effects are deduced by comparing 
classical trajectory simulations of the F + DBr(u) reaction 2.1 
(see parts a-c of Figure 1) and their muonium-transfer analogues 
(eq 2.2) (see parts a and b of Figure 3). As in section 3.1, the 
classical results are supported by corresponding quantum vibra-
tionally near-adiabatic hyperspherical representations of the F 
+ DBr(u) and F + MuBr(u) reactions; compare Figures 2 and 
4 as well as the resulting radial boundaries r0 qu of the F + DBr(u) 
and F + MuBr(y) reactions listed in Table II. 

Obviously, both reactions 2.1 and 2.2 follow the reaction path 
J if starting out from ground-state educts, whereas vibrationally 
excited educts induce systematic deviations from the reaction path, 
as explained in section 3.1. However, the detours are considerably 
stronger for F + MuBr(r) than for F + DBr(u): Even educts F 
+ MuBr(D = 2) excited only to the second vibrational level leave 
the reaction path, in contrast with F + DBr(U = 2). This dis
crepancy may be explained as follows: First, the skew angle 4>m 

between the educt and product potential valleys is smaller for F 
+ MuBr than for F + DBr (cf. eq 2.5 and Figures 1 and 3). 
Second, the vibrational energies E0 of F + MuBr(u) are larger 
than those of F + DBr(u) (compare Figures 2 and 4). Both isotope 
effects of (j>m and E11 imply that corner cutting and hence the radial 
range of the dynamical white spot increase more efficiently with 
vibrational excitation of F + MuBr(u) than with excitation of F 
+ DBr(u). Hence, criterion 2.15 is more easily satisfied for F 
+ MuBr(y) than for F + DBr(y). 

3.3. Reaction Dynamics on Modified Potential Energy Surfaces. 
The F + DBr(t> = 0) reaction dynamics on two adequate potential 
surfaces V1 (eq 2.7) and V2 (eq 2.8) are compared classically in 
parts a and d of Figure 1 and quantum mechanically in Figure 
2 (see also Table II). Apparently the ground-state educts react 
along the reaction path J1 of V1 but not along J2 of V2. This 
remarkable discrepancy, induced by a small modification (eq 2.9) 
of the potentials, may be explained by a static plus a dynamical 
effect: 

First, by construction, the reaction path J2 penetrates farther 
into the potential corner than J1; thus eq 3.1 applies (cf. eq 2.10) 
and Figure 1). 

^in(J2) < 'minttl) (3.1) 

Second, the hyperspherical potential curves £Vl(r) of V2 are 
shifted to slightly larger energies than those of V1 (see Figure 2) 
due to the small Gaussian shoulder (eq 2.9) of V2 superimposed 
on V1. Hence, by definition (eq 2.13), the radial boundaries T1,qu 

of the dynamical white spot of V2 are also slightly larger than those 
of V1 (see Figure 2). These shifts of quantum /•„,„ also correspond 
to equivalent shifts of the boundaries to classical trajectories; 
compare, e.g., rod for V1 in Figure la with the larger r0c] for V2 

in Figure Id (see also Table II). In conclusion, all radial 
boundaries for educts F + DBr(y) reacting on V1 or V2 satisfy 
eq 3.2. Both the static effect (eq 3.1) and the dynamical effect 

^(V1) < rv(V2) (3.2) 

than for V1. In fact, the reaction path J2 penetrates into the 
dynamical white spot of educts F + DBr(u = 0) on potential V2, 
in contrast with J1. 

4. Conclusions 
The present investigations of the collinear F + DBr(u) and F 

+ MuBr(y) reactions 2.1 and 2.2 on two potentials V1 and V2 (eq 
2.7 and 2.8) demonstrate that chemical reactions do not necessarily 
react along the reaction path J, even at high energies well above 
the tunneling regime. The results imply the following conclusions: 

(1) Strong deviations from the reaction path may be induced 
by vibrational excitation of educts. In extreme cases, depending 
on the system, the reaction may even avoid the potential barrier 
J, which by definition is the most integral part of J. This situation, 
which may appear paradoxical on traditional bias, has been 
demonstrated, e.g. in Figure Ic. 

The resulting deviations from J are similar to tunneling paths 
avoiding the saddle point,3,6'10 but the two mechanisms of vi
brationally induced corner cutting at high energies and tunneling 
below the classical reaction threshold are entirely different, yielding 
opposite energetic trends: Deviations by tunneling decrease with 
translationai energy of educts, in contrast with deviations due to 
vibrationally induced corner cutting, which increase with vibra
tional energy of educts. Moreover, both mechanisms are inde
pendent since the presence of one of them does not necessarily 
imply the other, for the same system. In the present case, F + 
DBr(i>) exhibits vibrationally induced corner cutting but hardly 
any tunneling-induced corner cutting. In fact, analyses by S matrix 
propagation along r (see ref 15a) indicate that the F + DBr 
tunneling paths should not deviate significantly from the minimum 
energy reaction path J (see ref 15b), because the barrier is located 
rather early in the F + DBr educt valley where J is (almost) a 
straight line without curvature (see Figure Ic). It would be 
interesting to test this result by the least action (ground-state) 
variational methods.9 Conversely, symmetric systems with barriers 
in the potential corner are good candidates for the simultaneous 
occurrence of tunneling-induced corner cutting (as demonstrated 
e.g. for Cl + HCl; see ref 9b,c and 19g) as well as vibrationally 
induced corner cutting (as implied by the potential curves shown 
in Figure 7 of ref 19g). 

(2) Vibrational excitation of educts is not a necessary condition 
for deviations from J. Even ground-state educts may leave the 
reaction path J, provided it penetrates sufficiently far into the 
dynamical white spot located in the potential corner (see Figure 
Id). 

(3) Detours away from J are facilitated by decreasing the mass 
of the transferred atom. Extrapolating this isotope effect, one 
should expect that other exoergic hydrogen-transfer reactions will 
also leave their reaction paths. Exoergicity, or equivalently en-
doergicity of the back reaction, is favorable, since they imply large 
dynamical white spots15 of the potential; however, even (near-) 
thermoneutral hydrogen-transfer reactions, e.g. O + HCl —• OH 
+ Cl or symmetric systems such as Cl + HCl *=* ClH + Cl or 
CH4 + 'CH3 ^ "CH3 + CH4, may avoid the reaction path, if 
missing exoergicity is compensated by enhanced educt vibrational 
excitation. 

The conclusions 1-3 also suggest the following inferences: 
(4) If the reaction does not react along the intrinsic reaction 

path, then it is apparently disadvantageous to use J as reference 
for evaluations of the reaction dynamics. For example, consider 
again the F + DBr(i> = 10) reaction illustrated in Figure Ic: The 
properties of J and its surroundings, including the barrier J, are 
completely ineffectual due to vibrationally enhanced corner cutting. 
Obviously, the reaction dynamics do not depend on J, and any 
theory relating properties of J or % to the F + DBr(D = 10) rate 
coefficient etc. should be inadequate. In general, other reference 
paths may be more appropriate than J, as suggested previously 
in ref 2b. More recently, Ruf and Miller have advocated the use 
of novel, exclusively Cartesian reaction paths,27 which should be 
adequate for many systems and much simpler to use than J. 

(eq 3.2) imply that criterion 2.15 is more easily fulfilled for V2 (27) Ruf, B. A.; Miller, W. H., preprint 1987. 
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The present examples provide a rather general caveat: The 
literature is abundant with barriers and other properties of the 
reaction paths for many systems. This information is often im
portant; however, in many cases it will not be sufficient to describe 
the chemical reaction. In fact, pure calculations of £ and J may 
be irrelevant. In any case, they should be complemented by 
evaluations of the reaction dynamics. 

(5) On the other hand, reactions that do not follow £ are also 
advantageous, since they explore different parts of the potential 
energy surface V, depending on educt excitation (compare parts 
a-c of Figure 1). In principle, this variability should allow us to 
determine all these regions of V by inversion techniques. For 
example, "transition state spectroscopy"28 would not only yield 
information on potential barriers % using thermal educts but also 
on the potential ridge using excited educts; likewise, very fast 
ground-state educts would yield information about the potential 
corner15 and so on. 

(6) The avoidance of the potential barrier | by selective educt 
preparation implies (by time-reversed trajectories or wave packets) 
that collision complexes prepared close to | yield specific energy 
release: They cannot decay into arbitrary but only into specific 
educt or product states. This conclusion corroborates a theorem 
of Ruf and Miller,27 i.e. isomerization from J along £ will invariably 
end up along the molecular mode with lowest frequency (and of 
the same symmetry as £), typically a skeleton or backbone mode 

(28) (a) Arrowsmith, P.; Bartoszek, F. E.; BIy, S. H. P.; Carrington, T., 
Jr.; Carters, P. E.; Polanyi, J. C. J. Chem. Phys. 1980, 73, 5895. (b) Hering, 
P.; Brooks, P. R.; Curl, R. F„ Jr.; Judson, R. S.; Lowe, R. S. Phys. Rev. Lett. 
1980, 44, 687. (c) Jouvet, C; Soep, B. Chem. Phys. Lett. 1983, 96, 426. (d) 
Maguire, T. C; Brooks, P. R.; Curl, R. F.; Spence, J. H.; Ulvick, S. J. J. 
Chem. Phys. 1986, 85, 844. 

but hardly ever a localized R-H vibration. 
The present conclusions are based on investigations of the simple 

collinear model reactions 2.1 and 2.2, which are at the disposal 
of available classical and quantum mechanical techniques. In the 
future, these studies should be extended to multidimensional 
systems, including atom plus diatom reactions with nonlinear 
barrier configurations and polyatomic reactions. Certainly it is 
a challenge to discover novel deviations from reaction paths in 
these systems. Most promising candidates include branching 
reactions where the branching region for classical trajectories or 
quantum wave packets is localized at a valley ridge inflection point 
before the bifurcation of £3,29 and reactions of large molecules with 
high excitation of selective vibrational modes perpendicular to £. 
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Abstract: Circumstantial evidence is presented which suggests that both side-on and end-on complexes are formed in the reactions 
of aliphatic, unbranched isonitriles RNC (R = C2H5-M-C6H13) with Fe+ in the gas phase. Depending on the chain length 
of the alkyl groups, two distinct processes are observed for either complexes upon collisional activation. One corresponds to 
oxidative addition of CH/CC bonds in the vicinity of the functional group to eventually cleave the R-NC bond (R = alkyl). 
This reaction, which is not observed for isomeric RCN/Fe+ complexes, dominates for R = C2H5-C4H9 and is caused by a 
side-on complexation of the RNC triple bond. For isonitriles with R = C5H11 and C6H13, this process is still operative; the 
major reaction, however, corresponds to H2 loss which is shown to involve functionalization of remote CH bonds, as has been 
demonstrated earlier for RCN/M+ complexes (M = Fe, Co, Ni). The experimental data further suggest that the binding 
energy of side-on complexes is larger for RNC/Fe+ than for RCN/Fe+. Metal ion induced isomerization of the type RNC 
—*• RCN does not seem to occur in the gas phase. 

The comparison of the behavior between nitriles (RCN) and 
isonitriles (RNC) and their role in synthetis1" is of fundamental 
interest in both organic and organometallic chemistry.1 While 
the two types of molecules behave similarly in many respects, they 
differ in others as, for example, in the direction of the dipole 
moment and, as will be shown in this communication, in their 
reaction with bare transition metal ions in the gas phase. Recent 
work has provided evidence that metal ions M+ (M = Fe,2"4 Co,3,4 

and Ni4) coordinate in the gas phase through the lone-pair 
electrons of the nitrogen atom of the nitrile resulting in an end-on 
complexation.5 By using mass spectrometric techniques this type 

Scheme I 
H H 

~F4 

? 

R? 

- C 2 H 1 

* Dedicated to Professor U. Schollkopf, G6ttingen, on the occasion of his 
60th birthday. 

of complexation is reflected in highly site-specific, collision-in
duced6 dissociation processes of these complexes which show that 
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